When Is It Justifiable to Ignore Explanatory Variable Endogeneity in a Regression Model?

نویسندگان

  • RICHARD A. ASHLEY
  • CHRISTOPHER F. PARMETER
چکیده

The point of empirical work is commonly to test a very small number of crucial null hypotheses in a linear multiple regression setting. Endogeneity in one or more model explanatory variables is well known to invalidate such testing using OLS estimation. But attempting to identify credibly valid (and usefully strong) instruments for such variables is an enterprise which is arguably fraught and invariably subject to (often justified) criticism. As a modeling step prior to such an attempt at instrument identification, we propose a sensitivity analysis which quantifies the minimum degree of correlation between these possibly-endogenous explanatory variables and the model errors which is sufficient to overturn the rejection (or non-rejection) of a particular null hypothesis at, for example, the 5% level. An application to a classic model in the empirical growth literature illustrates the practical utility of the technique. JEL Classification: C23.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When is it really justifiable to ignore explanatory variable endogeneity in a regression model?

A conversion of standard ordinary least-squares results into inference which is robust under endogeneity of some regressors has been put forward in Ashley and Parmeter, Economics Letters, 137 (2015) 70-74. However, their conversion is based on an incorrect (though by accident conservative) asymptotic approximation and entails a neglected but avoidable randomness. By a very basic example it is i...

متن کامل

Spatial Regression in the Presence of Misaligned data

In this paper, four approaches are presented to the problem of fitting a linear regression model in the presence of spatially misaligned data. These approaches are plug-in method‎, ‎simulation‎, ‎regression calibration and maximum likelihood‎. In the first two approaches‎, ‎with modeling the correlation between the explanatory variable, prediction of explanatory variable is determined at sites...

متن کامل

Oracle Inequality for Instrumental Variable Regression

where φ is the parameter of interest which models the relationship while U is an error term. Contrary to usual statistical regression models, the error term is correlated with the explanatory variables X, hence E(U |X) 6= 0, preventing direct estimation of φ. To overcome the endogeneity of X, we assume that there exists an observed random variable W , called the instrument, which decorrelates t...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

An Instrumental Variable Probit (IVP) Analysis on Depressed Mood in Korea: The Impact of Gender Differences and Other Socio-Economic Factors

Background Depression is a mental health state whose frequency has been increasing in modern societies. It imposes a great burden, because of the strong impact on people’s quality of life and happiness. Depression can be reliably diagnosed and treated in primary care: if more people could get effective treatments earlier, the costs related to depression would be reversed. The aim of this study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015